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Complex Volume Grid Generation

Through the Use of Grid Reusability

Stephen J. Alter�

Lockheed Martin Engineering & Sciences, Hampton, Virginia 23681

This paper presents a set of surface and volume grid generation techniques which reuse

existing surface and volume grids. These methods use combinations of data manipulations

to reduce grid generation time, improve grid characteristics, and increase the capabilities

of existing domain discretization software. The manipulation techniques utilize physical

and computational domains to produce basis function on which to operate and modify

grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation

method and parametric re-mapping technique. With these new techniques, inviscid grids

can be converted to viscous grids, multiple zone grid adaption can be performed to

improve CFD solver e�ciency, and topological changes to improve modeling of 
ow �elds

can be done simply and quickly. Examples of these capabilities are illustrated as applied

to various con�gurations.

Nomenclature
I,� streamwise computational direction

measured from nose to tail of body
J,� circumferential computational direction

measured from top to bottom of body
K,� computational direction normal

to body surface
�Si;j distance between points (i; j; k)

and (i; j � 1; k)
X,Y,Z Cartesian coordinates

Introduction

M
UCH emphasis in the Computational Fluid Dy-
namics (CFD) arena is placed on the identi�ca-

tion of viscous e�ects on evolving designs of complex
con�gurations across the speed range. The analysis of
viscous 
ow �elds is a necessity in the detailed analysis
phase of vehicle design. The necessity arises from the
ability of CFD to predict 
ow �eld characteristics in
regimes that are not attainable through experimental
techniques, as well as the veri�cation of experimental
results.1

The use of viscous computations in the various
phases of vehicle design have been hampered by the
time required to obtain volume grids that can accu-
rately capture boundary layer e�ects and entire 
ow
domains. The reduction of excessive time required to
generate volume grids for viscous computations (i.e.
viscous volume grids), has been a primary thrust of
researchers for nearly a decade.2,3 Techniques used
in recent years have placed emphasis on the devel-
opment of grid adaption to capture viscous related
gradients,4{6 as opposed to initial development of vis-
cous volume grids.
Generation of structured volume grids to perform
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viscous computations is di�cult if not impossible, us-
ing state-of-the-art domain discretization tools. The
di�culty arises from the need to tightly pack grid
points near the wall of a con�guration to accurately
capture and model the boundary layer.7 There are
several popular methods available to generate volume
grids with speci�ed grid point spacings and orthogonal
grid-line incidence, including:

� Elliptic partial di�erential equation (PDE)
solvers;8{11

� Hyperbolic PDE solvers;12

� Parabolic PDE solvers;13 and

� Algebraic solvers;14

Each of these schemes has its own set of advantages
and disadvantages. A common challange to each of
the methods is the e�cient control of grid spacing and
grid-line incidence at the domain boundaries. The
hyperbolic methods o�er the best control of point
spacings and orthogonality, but do not provide for the
control of outer boundary shape and can frequently
produce less than favorable results at the outer bound-
ary.15 Elliptic solvers can provide grid control as well
as fast generation of inviscid volume grids, but the
equations become sti� for highly clustered grids. To
retain the control provided by elliptic solvers and be
abble to generate viscous grids, conversion of inviscid
grids to viscous grids with appropriate point spacings
and orthogonality, could be performed.
Current methods of generating volume grids for

CFD use the solution of algebraic and partial di�eren-
tial equations. These methods are usually contained
within graphical user interfaces, to ease the determina-
tion of control variables as they a�ect the overall grid
being built. One widely used approach utilizes vari-
ous algebraic techniques to generate an initial surface
grid. The surface grid is usually smoothed through the
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a) Original grid. b) After PDE solver.

Fig. 1 Points forced out of a concave region.

a) Original grid. b) After PDE solver.

Fig. 2 Discontinuous cell spacings at a subface

interface.

solution of a non-linear Poisson's equation, to obtain
desirable grid line incidence character at a boundary,
such as orthogonality or slope continuity at a matching
interface.

When the solution of an entire block face produces
undesirable grid point stretching or poor grid line inci-
dence angles, the face can be subdivided into multiple
regions, termed subfaces. Then, the algebraic and
PDE equations can be used to further re�ne the grid
by modifying speci�c regions of the block face. This
method of using face decompositions to generate high
quality grids in the two dimensional computational do-
main is common and very powerful, as very complex
faces can be generated in this manner. However, this
process is very time consuming and can produce un-
desirable results. The most common problem is grid
points being forced out of concave regions and non-
uniform grid point spacings between two subfaces, as
shown in Fig. 1 and Fig. 2 respectively.

Volume grid generation is more complicated and the
two dimensional approaches to solving point spacing,
grid-line incidence and smoothness are not necessar-
ily applicable. This paper presents a set of algebraic
approaches to do volume grid re�nements and o�er
grid reusability through sub-blocking techniques. This
reduces the time to generate the de�ning faces of a
three-dimensional (3D) block, as well as o�ers a tech-
nique to generate viscous volume grids from inviscid
domain discretizations and grid adaption. These tech-
niques use standard trans�nite interpolation coupled

I,ξ
K,ζ

J,η
Y

Z

X

Fig. 3 Grid-point and computational coordinate

orientations.

with copying and redistributing grid points along �xed
computational directions through the use of paramet-
ric splines. These processes use simple assumptions to
develop complex volume grid manipulations to do grid
smoothing and ensure placement of grid point densi-
ties in regions of strong 
ow gradients. Manipulations
of two and three dimensional grids will be shown as
examples of each technique. All of the techniques dis-
cussed in this paper can be found in the Volume Grid
Manipulation Language16 (VGM) tool. Each of the
manipulations perfrommed in this paper were done us-
ing an SGI R4400 CPU with 256Mb of memory, unless
otherwise noted.

Computational Orientation

The coordinate system used in this paper is illus-
trated in Fig. 3. As shown, the I (or �)-coordinate
increases from the nose to tail, the J (or �)-coordinate
increases from the top to the bottom of the vehicle,
and the K (or �)-coordinate increases from the geom-
etry surface to the outer boundary. Throughout the
explanation of techniques in this paper, this con�gura-
tion will be used. It represents a sphere, cone, cut-
are
with a windside body
ap. The only complex face that
will be addressed in the development of the inviscid
grid will be the exit-plane at the maximum I location.

Domain Discretization Process

To generate an external volume grid about a ve-
hicle, the wall or surface of the con�guration must
�rst be generated. This is usually accomplished us-
ing a Computer Aided Design and Computer Aided
Manufacturing (CADCAM) system that can model
the surface upon which the grid is built as well as
the control grid characteristics, such as point spac-
ing and grid-line intersections. Then the rest of the

ow domain about the vehicle is discretized by con-
structing a 3D domain that would encompass the 
ow
�eld. In doing so, 6 boundary faces of a computa-
tional cube containing the 3D 
ow �eld are de�ned.
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a) Concave edge. b) Convex edge.

Fig. 4 Problems associated with concave and con-

vex regions.

For 3D elliptic solvers, these faces are typically initial-
ized with algebraic grid generators, and smoothed by
solving Poisson's equation with source terms to control
grid line incidence, intersections and point spacing.
Surface grids used to de�ne the domain of a volume

grid should contain no crossed grid lines, point-to-
point stretchings of less than 1.5 and minimized grid
line curvature to provide the best grid for CFD simu-
lations.15 The generation process for simple 2D faces,
such as the X-Z plane in Fig. 3, only requires the
identi�cation of boundary conditions at face edges to
develop a usable surface grid. As the complexity of the
surface increases, the 2D face can be discretized into
sub-domains7 (i.e. subfaces), where each subface is el-
liptically smoothed with dependence on the adjacent
subfaces.
The use of PDE solvers to develop block face or sur-

face grids can result in quality characteristics that are
not suitable for CFD purposes. One characteristic is
non-uniform point spacings at an intersection of two
subfaces. Illustrated in Fig. 2 is the result of using a
slope continuity boundary condition at the interface of
two subfaces, for the elliptic solver. Although the grid
lines are slope continuous, the cell spacings are not. A
second poor grid characteristic is the tendency of el-
liptic solvers to pull points away from concavities and
push points onto convexities, thereby reducing and in-
creasing grid resolution, respectively. The increasing
of grid resolution on convexities is permissible in the
realm of CFD but convexities also pose the problem
of wrapping a grid around a 270 degree corner. Wrap-
ping onto a convexity can produce poor cell spacings
traversing the corner as shown in Fig. 4. Reducing
grid density in concavities may not provide adequate
resolution of 
ow �eld gradients and can produce an
improper modeling of such a region.
To improve the grid-point spacings in concavities

and on convexities, the regions can be re-subfaced to
encompass the poor grid densities and point spacing
discontinuity and re-solved. For example, to repack
grid points into a concavity, two subfaces are con-
structed such that each share an edge that traverses
from the corner of the concavity to somewhere on the

a) Original. b) Redistributed edge.

c) Cell spacing reduced. d) Smoothed grid.

Fig. 5 Results of repacking grid points into a con-

cave region.

interior of the surface grid, as shown in Fig. 5(a).
Then, this edge is redistributed to place more points
near the corner as shown in Fig. 5(b), and each sub-
face is elliptically solved with slope continuity across
the shared edge illustrated in Fig. 5(d). The solution
usually produced grid-point spacing discontinuities at
the shared edge, shown in Fig. 5(c). Then the region
has to be re-subfaced to encompass the poor spacings
and re-solved. Again, this may cause the points used
to repack region, to pull away from concavity. Obtain-
ing a suitable grid in this type of area often requires a
compromise on grid point spacing and grid-point den-
sity. Generation of a usable surface grid in this region
typically requires a minimum of four sets of two, rede-
�ned subfaces and can consume as much as 4 hours of
user time on an SGI R4400 CPU. If a 3D block face
has multiple concavities and convexities, the time re-
quired to generate the surface grid can be extensive.
When three-dimensional solving is done, these subfac-
ing and resubfacing techniques do not exist in a solver,
which limits the e�ectiveness of the PDE grid solution
as applied to CFD simulations.

Improved Process

Instead of utilizing the subface decomposition pro-
cedure previously described, several new techniques
a�orded by the VGM code will be used to alleviate
the problems associated with elliptic smoothing of 2D
faces in regions of concavities and convexities. The
�rst method utilizes the computational domain of the
2D face by using the arclength parameter as a distri-
bution function for manipulating the location of grid
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points. This is done by computing the arclength func-
tion in a computational direction using equation 1:

�Si;j =
q
�x2i;j +�y2i;j +�z2i;j (1)

where,

�xi;j = xi;j � xi;j�1

�yi;j = yi;j � yi;j�1

�zi;j = zi;j � zi;j�1

if the direction of the arclength is J. The initial func-
tion, when mapped to the physical domain, locates
the grid points in their original positions but creates a
bridge between the coordinates. This will be referred
to as the basis function. By changing the arclength dis-
tribution function, the grid point locations along the
basis function will be changed. The arclength param-
eter is one dimensional, which o�ers a simple link to
the three dimensional physical domain. By grouping
a series of arclengths to form a region (i.e. zone) the
new distributions used for the arclengths in a compu-
tational direction can be created with a single function
or multiple dependent functions.
The poor grid-point spacing variances traversing

the perimter direction of the concavity, illustrated in
Fig. 2, can be alleviated by simply redistributing a
region that encompasses the poor spacings in the di-
rection of such spacings produces the best results. To
do this redistribution, basis functions are constructed
from the grid lines to be smoothed, by generating an
arclength parameter in the J-direction, as shown in
Fig. 6. The arclength parameter S is monotonic in
the direction computed, so interpolation along this line
will not produce double values. By isolating the region
to be smoothed, and computing the existing cell sizes
at the ends of the region in the direction of the redis-
tribution, Vinokur's17 function can be used to smooth
the grid along the basis functions in the selected re-
gion. In this case, a single redistribution function is
used to smooth a grid.
To correct the problem of grid point extraction from

concave regions, as shown in Fig. 1, a combination
of redistribution of the grid lines based on compu-
tational coordinates and interpolation of distribution
functions from regions on each side of the redistribu-
tion, in the direction away from the concave region
usually works best. To do this redistribution, the grid
line that emanates from the corner and the adjacent
grid lines are redistributed by using Vinokur's method
with a speci�ed cell size at the origin and the current
cell size at a benign point on the interior, based on
computational coordinates. By redistributing based
on computational coordinates the cell sizes speci�ed
are percentages of the current values, which implies
that a cell size of 1.0 is the current cell size. In this
case, the eleventh point on the interior was chosen as

Re-distributed

0 0.01 0.02 0.03 0.04
dsi1

-1.49

-1.48

-1.47

-1.46

x

1.1

1.11

1.12

1.13

y

y
x

Arclength Parameter Space

Original

J

Fig. 6 Cell spacing discontinuities removed via

Vinokur redistribution along arclength parameter

in I-direction.

a) Original grid. b) Corner re-packed.

Fig. 7 Center grid lines at corner redistributed to

pack points into concavity.

the stopping point for the redistribution. The result-
ing grid is shown in Fig. 7. Next, the grid lines on
both sides of the redistributed grid line have to be
manipulated to smooth out the kink produced by the
redistribution. To do this smoothing, a region on both
sides of the redistributed grid line is chosen such that
a blending region can be made to transition the ma-
nipulated grid to the non-manipulated regions. To do
this, a region of 11 points wide in the cross-sectional
direction is identi�ed, as shown in Fig. 8(a). The nor-
malized arclength parameter for the identi�ed region
in the direction of the original redistribution is com-
puted using equation 1 and 2:

�Si;j =
�Si;j

ImaxX
i=1

�Si;j

(2)

where the direction of the arclength is I (see Fig. 8(b)).
To smooth the grid, the beginning and ending ar-
clength parameter functions are blended onto the re-
gion using an elliptic blending function18 The elliptic
blend between the interface with the undisturbed grid
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a) Re-packed corner. b) Initial arclength pa-

rameter.

c) Blended arclength pa-

rameter.

d) Smoothed grid.

Fig. 8 Smoothed top region grid after packing

points into the concavity.

and the redistributed grid line, is chosen because the
resulting normalized arclength parameter will not de-
viate signi�cantly near the end points. Utilizing the
elliptic blending function produces a new normalized
arclength parameter �eld shown in Fig. 8(c). Using
this new blended arclength parameter as the basis
function to redistribute the grid lines in the identi-
�ed region to be smoothed, the grid becomes slope
continuous at the beginning and nearly slope continu-
ous at the end, as illustrated in Fig. 8(d). The slope
continuity results from the continuity of the elliptic
function used to blend the normalized arclength pa-
rameter. Performing the same type of redistribution
on the other side of the originally redistributed grid
line that emanated from the corner results in higher
quality characteristic grid lines, as shown in Fig. 9.
This process of grid smoothing will be referred to as
parametric remapping, because the arclength param-
eter is modi�ed from its original value to generate
multiple redistribution functions along the basis func-
tions for smoothing a grid. This process is robust, but
does require the grid lines being redistributed to be
of good quality to compute the basis functions upon
which the grid points are moved.

The parametric remapping process is not limited to
blending an arclength parameter from beginning to
end of a region in the cross-direction. Multiple re-
gions can be connected together and a cubic spline
or Neville's method can be used to compute the new
redistribution functions for their respective basis func-
tions. For example, the above problem of the concave

a) Original grid. b) Repacked corner.

Fig. 9 Smoothed full region grid after packing

points into the concavity.

a) Original grid. b) Repacked corner.

Fig. 10 Smoothed grid using multiple regions after

packing points into the concavity.

region could have been smoothed by concatenating the
fore and aft regions of the grid line emanating from the
concave corner. The blending in the cross-direction
could have been done with a cubic spline resulting in
the smoothed replaced grid shown in Fig. 9, with the
redistribution function values shown in Fig. 10.
Use of single or multiple redistribution functions

along basis functions as described can be a very pow-
erful tool in the smoothing of grids produced by other
codes. Each set of functions can be coupled or single
valued depending on the type of redistribution war-
ranted. Maintaining the grid line upon which the re-
distribution is performed ensures recovery from poorly
chosen redistribution functions and can promote bet-
ter control over grid smoothing. These methods, when
applied to the concave problem take about 5 minutes
to execute on the SGI machine, thereby reducing the
correction time of grid problems by nearly a factor
of 50. By reusing the poorly generated grid as op-
posed to regenerating a new grid, the time to generate
a 3D block face can be signi�cantly reduced. There-
fore, use of parametric remapping to do grid smoothing
and correct grid problems can lead to the development
of inviscid volume grids more e�ciently.

Grid Smoothing with TFI

Besides manipulating arclength functions to smooth
a surface or volume grid to correct problems created by
the use of PDE solvers, the use of algebraic grid gen-
eration techniques can be apropos. The only require-
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a) Original grid. b) TFI egenerated.

Fig. 11 Poorly chosen subface domains for per-

forming TFI to smooth a grid.

ment is that for Trans-Finite Interpolation19 (TFI)
to work properly, the de�ning bounds of a region to
be regenerated must be well posed.19 For example,
the de�ning edges or faces, of a surface or volume,
respectively can not have sharp changes in grid line
character. This is illustrated in Fig. 11. If the iden-
ti�ed region on the left is regenerated using TFI, the
resulting grid on the right has poor grid quality. The
poor grid quality is evident by the loss of orthogonal-
ity at the interior boundary in the concave region. In
the same grid, if the identi�ed region on the left in
Fig. 12 is regenerated, the higher quality grid results
because the orthogonal grid lines are used as the de�n-
ing boundaries for the algebraic grid generation. The
choosing of subfaces or subzones is extremely impor-
tant when using TFI for smoothing purposes, but the
technique can be used e�ectively. The choice of sub-
face domains is important because the TFI method is
very sensitive to the shape and distribution of points
on the de�ning boundaries. If the de�ning boundaries
are improperly chosen, the resulting grid will not be of
any higher quality. In contrast, if the chosen subface
boundaries are well posed, the interior grid can be of
high quality.

To recover from selecting poorly identi�ed regions
for using the TFI technique, grid line smoothing is still
possible. To smooth these types of grid lines, shown in
Fig. 11(a), simply interpolate in the arclength param-
eter domain for those points that are producing poor
grid character. This is done by �rst computing the
basis function in the direction of the smoothing. Then
vectors are created by �xing points on both sides of the
region to be smoothed, shown on the left in Fig. 13.
The derivatives at these �xed points are computed and
used in Hermite interpolation in the arclength param-

a) Original grid. b) TFI egenerated.

Fig. 12 Appropriately chosen subface domains for

performing TFI to smooth a grid.

TFI
Regenerated

UNIDIR
Smoothed

Fig. 13 UNI-DIRectionally smoothed grid across

poorly chosen subface domain from performing

TFI.

eter domain to ultimately smooth the grid lines, as
illustrated on the right Fig. 13. This process will be
referred to as UNIDIR or UNI-DIRectional smooth-
ing. This smoothing process is not robust because
the end points of a redistribution region at the cross-
directional limits may not need smoothing. To account
for this, a Dirichlet type boundary condition can be
applied to the ends of the region by blending from
no manipulation to full manipulation with weighting
factors computed based on computational location,
shown in Fig. 14. In Fig. 14, the cross-directional end
points of the region are not smoothed but the interior
grid is.

6 of 9

American Institute of Aeronautics and Astronautics Paper 97{1987



TFI
Regenerated

UNIDIR
Smoothed

Dirichlet
BC

Fig. 14 UNI-DIRectionally smoothed grid across

poorly chosen subface domain with Dirichlet

boundary condition.

Use of TFI for grid smoothing, coupled with the
UNIDIR process can easily remove poor quality grid
line character. Employing the Dirichlet type boundary
condition with the UNIDIR process can also provide a
stand alone grid smoothing tool. Sometimes a PDE
solver can produce highly kinked grid lines around
convex corners that traverse 270 degrees, as shown in
Fig. 14. Using the UNIDIR process, and maintain-
ing the existing cell spacings, this kink can be easily
eliminated. Whether TFI is coupled with the UNIDIR
process, or used alone, each of these techniques o�ers
powerful tools to remove poor grid line character and
improve the overall quality of a surface and volume
grid. In addition, these techniques are fast and e�-
cient, thereby o�ering a faster alternative to using an
elliptic solver and subface decompositions to correct
poor grid quality.

Application of VGM Techniques

To explain how to use these powerful manipulations
in accordance with one another, three examples will
be illustrated. The �rst grid that will be created by
the VGM techniques is a viscid grid from an inviscid
grid for the example con�guration. Utilizing the para-
metric remapping and TFI/UNIDIR techniques, the
3D block faced domain was generated for the exam-
ple con�guration. The volume grid was subsequently
generated using the 3DMAGGS8 code. The initial vol-
ume grid exhibited regions of poor grid quality around
the body
ap leading edge regions, shown in Fig. 15.
These poorly generated regions were regenerated us-
ing both classical rerunning of the PDE solver with
various source term formulations, and using VGM to
smooth the regions. The total time required by the
PDE solver to obtain a smooth and usable volume grid
for the poorly generated regions as well as the rest of

I=246

J=187

Fig. 15 Poor grid characteristic regions on exam-

ple con�guration.

the volume grid was 25 CRAY-YMP CPU hours, as
compared to the 1 hour of manipulations using VGM.
The latter only modi�es the pertinent regions while
the PDE solver operates on the entire volume grid.
The repaired grid using the VGM techniques is shown
in Fig. 16(b).

To generate the �nal viscous volume grid, the grid is
subdivided into two equal regions in the K-dimension.
The region that contains the wall is redistributed in
the computational domain with 10% cell sizes at the
wall and current cell sizes at the interface to the outer
block. The redistribution is done twice, each time in-
creasing the number of points by 100%, while the outer
block remains �xed. The e�ects of redistribution in
the computational domain have two signi�cant results.
First, if the grid lines have orthogonal character ini-
tially, the degree of orthogonality will be maintained
or increased, as shown in Fig. 16(b) by the sparse over-
lay of the inviscid grid onto the viscous grid. This in
turn increases the resolution of the boundary layer re-
gion as well as improves the grid quality. Second, by
redistributing grid lines based on computational coor-
dinates, the distribution function in this case is iden-
tical everywhere which results in a grid with similar
grid line character in the non-redistribution directions;
hence, good grid characteristics are either retained or
enhanced due to improved near wall orthogonality. In
summary, utilizing inviscid grids provides a functional
skeleton on which the viscous grid is based, o�ering
good grid characteristics and ease of generation.

A second application of the VGM technique is grid
adaption of an axi-symmetric grid about a wind tun-
nel test con�guration for the Mars-Path�nder space-
craft.20 In this example, the volume grid is represented
by a 2D surface. The computed 
ow �eld using the
original grid is shown at the top of Fig. 17. It is clearly
evident that there are two main 
ow structures in the
wake region that must be modeled with a higher degree
of grid point clustering. The outer bow shock and the
internal shear layer require better resolution to cap-
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J=187

I=246

a) Inviscid grid.

I=246

J=187

b) Converted viscid grid.

Fig. 16 Representative planes from aviscid grid

converted from an inviscid template.

ture the important features. To adapt the grid for
both features, equally spaced cross-sections are redis-
tributed from the maximumdiameter of the vehicle to
the end of the wake, such that all wall corners are pre-
served. For this example, each grid line is redistributed
to place 60 cells between the wall and the outer edge
of the shear layer, 24 cells from the edge of the shear
layer to the outer bow shock and 4 more cells from
the edge of the bow shock to the outer boundary, for a
total of 69 points (68 cells). Then the basis functions
in the direction of the body to shock are computed for
all interior grid lines between the redistributed equally
spaced grid lines. By performing multiple remappings
along these basis functions and UNIDIR smoothing at
the interface to the forebody, an adapted grid results
as shown at the bottom of Fig. 17. This entire process,
from writing the VGM script to adapting the grid took
15 minutes. By comparison, the use of a PDE solver to
do the same clustering and subsequent elliptic solving
took 90 minutes and numerous subfaces.

Although all of the manipulations illustrated to this
point have been in two dimensions, these manipula-
tions are possible in three dimensions. For example,
the X33 concept proposed by Lockheed Martin was ini-
tially evaluated for high speed regimes using a multiple
block decomposition with ordered subset matches at
block interfaces and large discontinuities in cell spac-
ings. Further analysis was required in the transonic
regime, but the grid from the hypersonic regime was
not suitable due to the signi�cant discontinuities in
cell spacings, the number of blocks, and the non-point
to point block interfaces. To generate a volume grid
for transonic regime computations, the hypersonic grid
was converted to a single block domain with cell to

Adapted Grid

Original Grid

Solution

Fig. 17 Adapted 
ow �eld based on multiple 
ow

structures.

cell scales of less than 1.5. This conversion was done
through a series of single function remappings on var-
ious regions of the volume grid, the results of which
can be seen in Fig. 18. Notice that on the left, the
darker grid lines identify the various blocks that are
converted into a single block on the right. This con-
version from the hypersonic grid to the transonic grid
took approximately 2 hours of manipulations. Use of
a PDE solver to do the same conversion would have
required a regeneration of the entire volume grid from
scratch, consuming at least 100 hours of CPU time (the
time it took to generate the initial hypersonic grid).
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New
Single-Block

Original
24-Blocks

Fig. 18 X33 converted from a hypersonic to tran-

sonic grid.

Conclusion

A set of techniques for manipulating existing sur-
face and volume grids to improve grid quality char-
acteristics, reduce grid generation time and increase
grid reusability have been presented. The paramet-
ric remapping techniques o�er 
exibility in the use of
good directionally dependent grid lines to form the
basis for simple but powerful manipulations for grid
smoothing. The TFI and UNIDIR methods provide
e�cient manipulating capabilities that are not usually
available in the solution of PDE's for grid generation
purposes. Each technique, when used in conjunction
with one another, forms a robust tool that can of-
fer faster turnaround times to eliminate poor quality
grid characteristics and provide reusability of existing
grids. By reusing existing surface and volume grids,
the process of obtaining CFD simulations about com-
plex con�gurations can be signi�cantly augmented and
the time to get a �nal solution can be reduced.
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